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Vanadium-phosphorus catalysts with different P/V ratios (0.93-1.28) have been investigated by 
EXAFS and XANES applied to the K-edge region of vanadium. When looked at from the pre-edge 
peak, vanadium appeared in the 4+ state after drying, while after calcination at 673 K both 4+ and 
5+ states occurred simultaneously on samples with P/V > 1. EXAFS revealed that by changing 
chemical composition, structural variations occur around vanadium. On dried samples, the coordi- 
nation number decreased from 5 to 4. On calcined samples, the longest V-O distance increased 
from 1.91 to 1.96 A. The possible influence on the catalytic activity is discussed. © 1990 Academic 
Press, Inc. 

1. INTRODUCTION 

In a recent paper (1) we investigated the 
catalytic activity for n-butane oxidation of 
vanadium-phosphorus oxides having dif- 
ferent P/V ratios. Their physicochemical 
characterization was made by X-ray dif- 
fraction (XRD), X-ray photoelectron spec- 
troscopy (XPS), and extended X-ray ab- 
sorption fine structure spectroscopy 
(EXAFS). The latter concerned the collec- 
tion of P K-edge spectra and allowed us to 
conclude that an excess of phosphorus, al- 
though responsible for a dramatic increase 
(one order of magnitude) in the specific 
conversion, does not induce relevant struc- 
tural effects around P atoms, i.e., variation 
of the coordination geometry and inter- 
atomic distances. 

In the present work we examine the pre- 
edge and the EXAFS K-edge regions of va- 
nadium, thus completing, as anticipated 
previously (1), the structural investigation 
of the catalyst samples. The application of 
EXAFS and XANES (X-ray absorption 
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near-edge structure) techniques in hetero- 
geneous catalysis has increased in recent 
years and has been widely reviewed (2, 3). 
Such studies offer a valuable contribution 
to the knowledge of the structural and elec- 
tronic situation of a specific atom, mainly in 
the presence of structural disorder, typical 
of heterogeneous catalyst samples. 

2. EXPERIMENTAL 

Catalysts were prepared by adding a suit- 
able amount of aqueous H3PO4 to a solution 
formed by stirring VzO5 and HCI in water 
for 4 h at room temperature (RT). Pale 
green solids with P/V atomic ratios in the 
range 0.93-1.28 were obtained after evapo- 
ration to dryness and treatment at 423 K in 
air for 2 h. Calcined samples were treated in 
air at 673 K for 4 h. 

Specimens for spectroscopic analysis 
were prepared by deposition of a known 
amount of powder on a membrane (Nu- 
cleopore, thickness 10 /xm, diameter 1.5 
cm), in such a way as to obtain an absorp- 
tion /xx ~ 2 just above the edge. The ab- 
sence of defects as fractures in the speci- 
mens and their uniformity was checked 
optically at a magnitude of 140x. 

Measurements were carried out at the 
EXAFS-III station mounted on DCI (1.85 
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TABLE 1 

Reference and Catalyst Samples 

Sample P/V ratio Treatment Analysed 
temp (K) 

Pre-edge EXAFS 

VO(acach  - -  - -  Y Y 
VO2" - -  - -  Y N 
V205 - -  - -  Y Y 
1 0.98 423 Y Y 
2 1.12 423 Y Y 
3 1.25 423 Y Y 
4 1.28 423 Y Y 
5 0.93 673 Y Y 
6 0.98 673 Y Y 
7 1.12 673 Y Y 
8 1.25 673 Y N 
9 1.28 673 Y Y 

N o t e .  Y, yes;  N, no. 
Data from Bianconi et  al. (7). 

GeV, 250 mA) at LURE, Orsay, using a 
double crystal Si(311) monochromator and 
two ionization chambers filled with He/Ne 
gas mixture. The spectral ranges 5250-6250 
eV (AE = 2.0 eV) and 5445-5505 eV (AE = 
0.3 eV) were scanned. Each energy was 
measured for 1 s and each spectrum was 
repeated three times. In Table 1 both cata- 
lyst and reference samples are summarized. 

The EXAFS data processing was carried 
out on a Univac 1100/72 computer follow- 
ing our standard procedures (4), briefly 
summarized as follows. The background 
contribution/~B(k) originating from the pre- 
edge region was extrapolated using a Victo- 
reen relationship, then subtracted from the 
experimental data. The smooth atom-like 
contribution /*0(k) was obtained by a 4th- 
order polynomial fit. The edge energy E0 
was arbitrarily chosen at the edge inflec- 
tion. Values assigned to the various param- 
eters are collected in Table 2. The EXAFS 
spectra multiplied by a cubic k factor were 
then Fourier transformed (FT) in the 3- to 
13.5-.A -1 range after application of a Gaus- 
sian window. After FT, the contribution of 
each atomic shell surrounding the absorb- 
ing atom could be isolated in the R space. 

TABLE 2 

Assigned Values of Eo 

Sample E0(eV) 

VO(acac)z 5479 
V205 5478 
1 5475 
2 5475 
3 5475 
4 5475 
5 5475 
6 5475 
7 5475 
9 5475 

3. RESULTS 

Pre-edge Region 

The absorption spectra in the pre-edge 
region of samples treated at 423 K are re- 
ported in Fig. 1, together with those of 
some reference compounds. Spectra of the 

5~50 r-Y.,,80 55!0 
E (eV) 

FIG. 1. Edge region of V205, VO2, VO(acac)2, and 
Samples 1, 2, 3, and 4 (from a to g, respectively). 
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Since the pre-edge peak is always present 
(Figs. 1 and 2), vanadium must always be 
located in sites without a center of symme- 
try. Furthermore, from Fig. 1 it appears 
that in samples treated at 423 K vanadium 
is tetravalent. On the other hand, Fig. 2 
shows that after treatment at 673 K some 
valence change occurs. More precisely, at 
low P/V ratios vanadium becomes pentava- 
lent, while both V 4+ and V s+ are present for 
P/V >- 1.12. In fact the pre-edge peak is 
clearly a doublet. 

EXAFS Region 

The EXAFS spectra of specimens dried 
at 423 K or calcined at 673 K are reported in 
Figs. 3 and 4, respectively. The corre- 
sponding FT moduli are reported in Figs. 5 
and 6. 

Provided that the amplitude backscatter- 
ing factor Fi(k) and the phase shift dPi(k ) a r e  

! 
FIG. 2. Edge region of V205, VO2, VO(acac)z, and o.o-I 

Samples 5, 6, 7, 8, and 9 (from a to h, respectively). -o.o~ 

00 
same samples after calcination at 673 K are ~ -oo; 
reported in Fig. 2. The absorption scale of o.o: 
each spectrum has been normalized assum- 
ing 1 as the maximum energy value of the 

- o.oz - absorption continuum (in the EXAFS re- 
gion, at E = 5505 eV, that is 30 eV above 
the threshold peak). The energy scale has o o- 
been defined attributing the value of 5469 
eV to the sharp maximum of the pre-edge -02- 
absorption of V205 (5). A difference of 0.0- 
about 1 eV is apparent among the values for 
the position of this peak (due to V s+) and -0.2- 
those  of VO2 and VO(acac)2, where vana- 
dium is present as V 4+. 

0 . 0  

The pre-edge vanadium peak has been at- 
tributed to the forbidden electron transition 

-0.2 - 
ls ~ 3d (6). Since it occurs only in systems 
where the octahedral coordination is dis- 
torted (7, 8), the transition can be used as a 
double indicator, both of the valence state 
and of the presence of a ls symmetry 
around the absorber atom. 

f 

e 

Z,O 0 8,0 11.0 
k ( ~  - I )  

FIG. 3. EXAFS signal x(k) vs k of V205, VO(acac)2, 
and Samples 1, 2, 3, and 4 (from a to f, respectively). 
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FIG. 4. EXAFS signal x(k) vs k of Samples 5, 6, 7, 
and 9 (from a to d, respectively).  

known, the structural parameters Ni (num- 
ber of neighboring atoms defining the ith 
shell), Ri (average distance between the ab- 
sorbing atom and the neighboring atoms), 
and o-i (rms deviation) can be determined 
for a given sample. Fi(k) and ~ (k )  values 
can be experimentally obtained from suit- 
able model compounds. Alternatively, val- 
ues tabulated by Teo and Lee (9) can be 
used. We chose the latter course, checking 
the suitability of values on a compound 
having a known structure, namely 
VO(acac)2, in which each V atom is sur- 
rounded by one oxygen atom at 1.58 A and 
four more oxygen atoms at an average dis- 
tance of 1.97 A (10). 

We parametrized the electron mean free 
path X(k) as proposed by Teo (11): 

k 
X(k) = ~. 

The k-multiplied signal obtained anti-trans- 
forming the first FT peak of VO(acac)2 was 
then rms-fitted between 4 and 10.75 A -T. 
During fitting, coordination numbers were 
kept fixed at their crystallographic values, 
while k was free to vary following the rela- 
tionship 

k ~ = ( k  s + 0.2624E0) w2. 

In this way, F, R, and or were determined. 
The final fit is reported in Fig. 7, while nu- 
merical values are collected in Table 3. The 
comparison with crystallographic data is 
satisfactory. For F, a value of 1.40 A -2 was 
found, its reliability being checked in the 
fitting of the anti-transform of V205 FT. In 
this case both N and R were left free to 
vary. The values obtained are reported in 
Table 4, again showing a good agreement 
among EXAFS data and crystallographic 
parameters (12). The final fit is reported in 
Fig. 8. 
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FIG. 5. Moduli of Fourier transform of V205, 

VO(acac)2, and Samples 1, 2, 3, and 4 (from a to f, 
respectively).  
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FIG. 6. Moduli of Fourier transform of Samples 5, 6, 
7, and 9 (from a to d, respectively). 

On catalyst samples, the fit was carried 
out on the signal obtained by anti-trans- 
forming the first peak of the FT. In the first 
instance, the hypothesis of only one V-O 

TABLE 3 

Crystallographic Data and EXAFS Fit Results 
of VO(acac)2 

Crystallographic 
data 

V-O bond 
length (A) 

EXAFS results 

N R(,~) o'(A) E(eV) 

1.58 1.0 1.59 0.071 - 19 
1.98 4.0 1.98 0.059 -20 

dis tance  w a s  a s s u m e d ,  l eav ing  N ,  R,  o-, and 
E f ree  to  v a r y .  A n  a c c e p t a b l e  a g r e e m e n t  
w a s  n e v e r  r e a c h e d ;  thus  two  V - O  dis-  
t a n c e s  w e r e  c o n s i d e r e d .  In  the  l a t t e r  case  
good  fits w e r e  found ,  as s h o w n  in Fig.  9, 
c o n c e r n i n g  S a m p l e  4. Al l  o t h e r  fits had the 
s a m e  qua l i t y ,  and the n u m e r i c a l  r e su l t s  a re  
c o l l e c t e d  in T a b l e  5. 

4. DISCUSSION 

We first recall that, when considering the 
catalytic behaviour of a series of P-V cata- 
lysts having a P/V variable in a relatively 
narrow range around the value of 1, the 
most important feature is that the catalytic 
activity, specifically for the oxidation of n- 
butane to maleic anhydride, has a stepwise 
increase passing from a P-deficient situa- 
tion to a P-excess situation. This was ob- 
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FIG. 7. Experimental signal (dotted line) and calculated signal (continuous line) of Sample 
VO(acac)2. 
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T A B L E  4 

Crystallographic Data and EXAFS Fit Results 
of V~O~ 

Shell 

1 2 3 4 

N 
a 1.0 1.0 2.0 1.0 

b 1.0 1.1 2.1 0.9 

v-o(A) 
a 1.58 1.78 1.88 2.02 

b 1.56 1.80 1.90 2.03 

o'(A) 0.075 0.081 0.070 0.095 
AE(eV) - 2 1 .  - 2 1 .  - 2 0 .  -19 .  

Note. a, crystallographic data; b, EXAFS results. 

served by several authors (13, 14) and has 
been confirmed by us (l) .  In the attempt to 
interpret this sharp variation in catalytic ac- 
tivity, we performed several chemicophysi- 
cal characterizations of the catalysts, con- 
sidering both uncalcined (actually dried at 
423 K) and calcined (at 673 K) samples. In 
our previous study no definitive answer 
was given. The EXAFS investigation of the 
P K-edge showed no particular variations of 
the phosphorus structural situation vs the 
P/V ratio. On the contrary, XPS showed 
some tendency for the oxidation properties 

T A B L E  5 

EXAFS Fit Results of Catalyst Samples 

Sample N R(,~) o-(A.) E(eV) 

1 1.0 1.57 0.070 - 2 0  

3.9 1.96 0.078 - 15 

2 1.1 1.56 0.072 - 17 
3.8 1,97 0.074 - 15 

3 1.1 1.59 0.094 - 20 

2.9 1.95 0.072 - 15 

4 1.0 1.58 0.090 - 2 0  

3. l 1.95 0.055 - 15 

5 1.3 1.60 0.103 - 2 0  

3.9 1.91 0.050 - 14 
6 1.4 1.57 0.090 - 2 0  

4.0 1.92 0.049 - 17 

7 1.4 1.59 0.091 - 2 0  

3.9 1.94 0.066 - 14 

9 1.4 1.59 0.080 - 2 0  
4.2 1.96 0.078 - 16 

to change. In fact, we observed that the 
temperature at which V 4+ oxidized to V 5+ 
increased on increasing the P/V ratio (1). 
This result agrees with the suggestion that 
an excess of phosphorus prevents the com- 
plete oxidation of vanadium by calcination 
in air, thus allowing the formation of the so- 
called fl phase, considered the active phase 
(/5). 

Such a result, however, should be again 

0,0 t, - 

0 . 0 -  

- 0.04 - 

- 0 . 0 6 -  

I I I I 

4.0 6.0 8,0 10.0 
k (~')1 

FIG. 8. Experimental signal (dotted line) and calculated signal (continuous line) of Sample V205. 
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Flo. 9. Experimental signal (dotted line) and calculated signal (continuous line) of Sample 4. 

considered a consequence of the composi- 
tion variation, exactly like the catalytic 
activity, and not a cause, The fact that 
vanadium is involved in this behaviour 
prompted us to deepen the structural inves- 
tigation concerning this atom, through the 
EXAFS investigation reported here. 

Both pre-edge investigation and EXAFS 
measurements confirmed that variations in 
the structural situation of V do occur upon 
changing the catalyst composition. When 
the pre-edge peak was examined, interest- 
ing information was obtained on the actual 
valence state of vanadium before and after 
calcination and on its tendency to oxidize. 
For P/V > 1, the presence of the phos- 
phorus excess seems to play a role in the 
incomplete oxidation to the highest valence 
state, that is, V 5+. Results obtained in the 
previous work (i) must be recalled in order 
to have a complete picture. XPS data are in 
full agreement with the present pre-edge 
result, suggesting that what we observed 
was a bulk phenomenon with an influence 
on the surface properties. 

Also the XRD results then obtained on 
dried samples, that is, the occurrence of va- 
nadium in a tetravalent state, agree with 
this work; in fact we mainly observed the 
presence of crystalline phases such as the 

so-called precursor of phase/~ (15) and, for 
P/V > 1, VO(H2PO4)2. 

EXAFS results suggest that more subtle 
variations occur by changing chemical 
composition of the catalysts. From Table 5, 
we can compare structural parameters of 
the uncalcined samples, structural parame- 
ters of calcined samples, and finally thermal 
treatment effects on the same sample. 

At low P content, vanadium before calci- 
nation tends to coordinate five oxygen at- 
oms, one at short distance (1.57 - 0.02 ,~) 
and four at long distance (1.96 - 0.01 A). 
While these distances do not vary with 
composition, in the presence of a phos- 
phorus excess the coordination number de- 
creases from 5 (that is 1 + 4) to 4 (that is 
1 + 3). The thermal treatment does not 
cause variations in the population relative 
to the longest distance, while the shortest 
distance is in all cases populated by a num- 
ber of oxygen atoms which exceeds 1 (more 
precisely, 1.4 - 0.1). In its turn the total 
coordination number slightly exceeds 5 
(5.4 - 0.2). 

It is likely that a fraction of V atoms 
come in a distorted octahedral coordina- 
tion, while a majority remain in a square 
pyramidal coordination. This feature, how- 
ever, is unlikely to be related to the activity 
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variations, occurring in all samples regard- 
less of chemical composition. 

For calcined samples, an interesting 
structural variation occurs on increasing 
the P/V ratio; that is the V-O longest dis- 
tance increases from 1.91 ,~ (shorter than 
that in uncalcined samples) to 1.96 A, simi- 
lar to that found in uncalcined samples. 
Even though the variation is small, it must 
be considered larger than the estimated er- 
ror, taking into account that this distance is 
the more populated, so contributing in a 
substantial way to determine the frequency 
of the EXAFS oscillation. Our data do not 
allow us to state whether the distance varia- 
tion is gradual with P/V or stepwise; how- 
ever, stepwise variation would account bet- 
ter for the catalytic activity behaviour, 
together with the ability of vanadium to be 
present in the same specimen both as V 4+ 
and V 5+. The EXAFS data here are related 
to a multiphase system, intrinsically inho- 
mogeneous, so giving average results. Our 
study suggests that a deeper view of the 
catalysts could be achieved by a local mi- 
crostructural technique, such as scanning 
transmission electron microscopy. 
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